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STABILITY OF A PLANE JET IN A MEDIUM WITH RELAXATION

V. V. Sobolev and O. Yu. Tsvelodub ‘ UDC 532.5

1. Presentation of the Problem and Basic Equations. Let us consider the stability (relative to infinitely
small perturbations) of the steady-state jet flow of a liquid having the following equation of state [1, 2]:

8p = c38p + B oz 80+ % 77 B, (1.1)

where 3p and 3p are small perturbations of pressure and density; ¢ is the velocity of sound in the medium; and
B and % are the relaxational viscosity and dispersion coefficients. A detailed derivation of the equations was
givenin [2, 3] for perturbations of the velocity vand pressure p. Ifwe express the perturbed quantities inthe form

=z, y, 2, 1) = f(y) exp liafz—ct) + iyz],

where f is the perturbation of the pressure, density, or velocity components; x, y, z are the spatial coordinates;
a, y are the wave numbers; and c is the velocity (c =cy +icj); the equations for the two-dimensional perturba-
tions v{y) and p(y) take the form [3]

v — V' (V —c) AV —(B +17‘5_'—'C—AV'2) v=0; - (1.2)

» v, _
L Sy ¥ 4 —BP—Q’

Ao M2 (24 iaﬂsz(V——C)) - (L.3)
(1 2aBM2 (V — ¢) — %a®™2 (V — ¢)2) (M2 (1 -+ x22) (V — c)>— iaBM? (V — c) — 1)’

B = o*(1 — M*(V—c)*/(1 + iafMB(V—c) — xa®MEV—c)?),

where V is the velocity profile of the main flow; M is the Mach number (M=Vyax/cy). Inthis paper we have

: V = 1/chy, (1.9
where n is a natural number,

The problem as to the stability of steady-state flow (1.4) reduces to a determination of the eigenvalues of
¢ for the equations (1.2), (1.3). The stability may be studied on the basis of Egs. (1.2), (1.3) for two-dimensional
perturbations, since it may be shown that the problem of stability relative to three-dimensional perturbations

is equivalent to the problem of stability relative to two-dimensional perturbations with a smaller Mach number
and a larger parameter B.

The boundary conditions for Egs. (1.2), (1.3) involve the requirement that v and p should be finite at y =+ o,

Let us consider some relationships for ¢. The semicircular theorem limiting the range of unstable eigen-
values for parallel flows in an incompressible stratified liquid was proved in [4]. Let us consider the conditions
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TABLE 1
Mode I Mode 11
o M=o | Mt M= | M=
: 5
0,025 0,09371 0,09390 0,03963 0,05363
0,05 0,12944 0,12987 0,05920 0,07016
0,1 0,17478 0,17555 0,08488 0,08765
0,125 0,19104 0,19183 0,09406 0,09270
0.2 0,22580 | 022628 | 041313 | 010041
0,3 0,25336 0,25213 -} 0,12642 0,10109

TABLE 2 TABLE 3
« | 1 2| 3 @ 1 2| 3
04 | 005356 | 0,05356 | 0,05354 04 |40,82296 | 0,82270 | 0,83607
05 | 02sm0g | oamer | ommiy 0,05227 | 0,05184 | 0,04578
. 026634 | 026637 | 026730 02 | 07752 | 077464 | 0,79174
6 8:%32382 o.25088 | 0.20262 0,06959 | 0,06857 | 0,06183
08 | 0306ty 0:30638 | 0,30473 0,3 | 073048 | 0,73851 | 0,75938
. X 2 125376
1,0 | 0734895 | 034943 | 034761 0,07049 | 0,06873 |  0,06303
s | 00Tt | 023050 | 02387 04 | 0752 | 0,71018 | 0,73411
S| Driaes | ddste | O.dsoss 0,08497 | 0,06244 | 0,05865
2,0 | 049772 | 0'50156 | 049682 0,6 | 06700 | 066888 | 0,60715
2
24 g:gggg 8:;%’23‘2‘ 8:%,%2 0,04549 | 0,04129 | 0,04245
0.06319 | 0/05007 | 0.07286 08 | 064493 | 064407 | 0,67373
26 | 057033 | 058332 | 056763
0,04202 | 004122 | 005264 0,02226 | 0,01848 | 0,02067

under which this theorem holds for a liquid with an equation of state (1.1) as well. Let ¢j =0. Dividing (1.3) by
(V — ¢)2, we obtain

IV — o'V — a®[(V — )2 — M?D-1]p = 0,
D =1 + iafM*(V — ¢) — »a®™M3V — c)%

Multiplying .(1.5) by p*, we integrate with respect to y using the boundary conditions and separate the real and
imaginary parts in the resultant expression:

(1.5)

ST~y — QN[ LRIl | os D) dy — oM [ (4 + Moy | prD [P dy = 0 (1.6)
J o —e [oe, (LEEELLPE oot D) + aopaes pIDI*] dy = 0. (1.7)

1t follows from (1.7) that for growing perturbations with » =0 and B = 0a point y. exists such that e, =V(y,).
We see that for 1 =0, 8 =0 Egs. (1.6) and (1.7) have the same form as the analogous expressions in [4]. Thus,
in the present case we have
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[ — L (Ve + V)| + 68— - (Ve — Viund?} | 0y + oz § o LBE S <o,
{ler =5 Vmax -+ Vo) | +6F — 7 (Ve = Viua)?}] | @y + &M | oy < 03 (1.9

_1pE+a?pl xetM* | p |2 -
="y —p 11—m2M2(V—-c)2|2>0 .9
It follows from (1.8) and (1.9) that
2
[Cr - -;“ (Vmax + Vmin)] + c? < % (Vmax - Vmin)z» (1'10)

Equation (1.10) defines the eigenvalues ¢ of the problem as to the Rayleigh stability of parallel flows in a me-
dium with an equation of state (1.1). In the particular case of jet flow (1.4), the inequality (1.10) takes the form

1 2
(cr_T) +512<%'

2. Study of Jet Stability. Since the profile of the main flow (1.4) is an even function, we may seek the
solutions for perturbations symmetrical with respect to the velocity v (antisymmetrical with respect to the
pressure p) and antisymmetrical with respect to v (symmetrical with respect to p) separately.

After making the substifutions

z=thy;, ¢ =p'/p; y=vlv 2.1)
the homogeneous linear equations of the second order (1.2), (1.3) reduce to the nonlinear Riccati equations:

’ v
A=+ o*—5go—B=0; (2.2)

(L— )@ -9 — V' (V=) Ap— B— 57—

V=1—252 V =—niV,
V"’ = nV((n + 1)22 — 1).

+ AV =0,

(2.3)

The primes in (2.2), (2.3) signify derivatives with respect to z. The boundary conditions for ¢ and y at the
point z=—1 have the form

P~ = b (=) =t = it ) @4

— iaPM2c — xo2M2c2

We see from (2.2)-(2.4) that the values of the derivatives ¢' and ' at this point are not properly determinate.
Resolving the indeterminacy by the Lthdpital rule, we obtain the boundary values of ¢ ' and §'. For n>2

¢(—1) =9 (—1) =0
for n=2
' o' (—1) = (A — 4o(—1)/c)/(1 + o(—1));

, 2cp (— 1) M2 (2 — iafM2c)
Y (—1)= (A T (1 —iaBM2 — %a®M2%?) (M2 (1 I xa?) ¢ + iafMZ —1 4/e )/(1 + (- 1))1

Ae — aM?% (2 —iafM2%)
(1 — iafM2c — xa2M?c?)?
~ The eigenvalues ¢ corresponding to the perturbations symmetrical in v (mode I) were found from a solu-
tion of the boundary-value problem for . For antisymmetrical perturbations (mode II) the equation was solved
for ¢. The method of obtaining the solutions was analogous to that described in 2, 3].

For M=0, o =0.2 the resultant values of ¢ coincide with the results of [51, in which ¢ was given to three
significant figures for n=2. Certain differences for smaller « are evidently due to the fact that the error in
the determination of ¢ introduced by the transfer of the boundary conditions from infinity to a finite distance
increases with decreasing «. The substitution of the independent variable (2.1) (by analogy with [6]) enables this
disadvantage to be avoided. :

Figure 1 shows the spectra of eigenvalues for mode I with M=0. As in the subsequent figures, curves
1-3 represent the dependence of cj and curves 4-6, that of c,., on the wave number « for n=2, 4, and 6, respec-
tively. We see that with increasing n, the value of ¢, diminishes, while the flow becomes more unstable in the
region of large o and more stable in the region of small «.
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Figure 2 illustrates the dependences of ¢j and ¢y on « for mode II with M=0. Here as n increases the
phase velocities ¢y increase, while the behavior of ¢j relative to « is qualitatively the same as in the first mode.
The fall in ¢ with increasing n in the region of small « agrees with the results of [7], in which it was shown
that for long-wave perturbations

12
¢; NLGUz{ 5Vzd} .

The compressibility of the medium also has a considerable effect on the stability of jet flow. In a com-
pressible medium ¢, rises for mode I and falls for mode II. In both cases c; falls for large o and the range of
instability with respect to o contracts. Figure 3 shows the behavior of the eigenvalues for M =1 and mode 1I.
These results agree closely with the data of an earlier paper [8] which considered the profile (1.4) for n=1 and
M=1. For small o (Table 1, which gives the data for n =6) ci increases, the range of o for which the compres-
sibility has a destabilizing influence on the flow being greater for mode I than for mode II. Calculations show
that for a jet with smaller momentum (greater n) and a specified Mach number the range of destabilization in-
creases.

Let us consider the action of dispersive and dissipative effects. Although the influence of these on the
flow stability is much less than that of compressibility, it is interesting to consider in which sense the imagi-
nary part of c varies.

Table 2 shows the eigenvalues for mode [ and M=1, 2 withn=6. The upper and lower numbers for a
specified o correspond to the real and imaginary parts of c. For comparison, column 1 gives the spectrum
of eigenvalues for 8 =n=0; column 2, for 8 =0, ®=0.2; and column 3, for 8 =0.5; n=0. We see that in a con-
servative medium dispersion leads to a fall in ¢j with increasing «, while the phase velocity of the perturba-
tions increases. It follows from the resuits presented in column 3 that dissipation makes mode I less stable.
If the jet has a large momentum (n=2), dissipative effects have a stronger influence on the instability of the
flow, while the stabilizing influence of dispersion starts operating at smaller wave numbers than in the case of
n=e6.

Table 3 illustrates the eigenvalues for mode I with M=1.2 and n=6. Columns 1-3 here correspond to the
same values of the parameters as in Table 2. In this case the dispersive and dissipative effects promote
greater flow stability; for smaller n their influence diminishes.

The authors wish to thank V. E. Nakoryakov for valuable comments and discussion of the results.
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